Rust 机器学习的现状

图片来自pexels.com

每隔一段时间,这个话题就出现在社交媒体或Rust用户频道上。 我想简要介绍一下我所看到的事情的历史,以及有关机器学习/深度学习框架的现有变化以及最近的主要趋势的一些信息。

Brief history and where are we now?

现有的 ML/DL 生态系统非常庞大,因为它们是高性能计算、数学优化、系统和编译器工程等的组合。 因此,为了简单起见,如果我们将ML划分为传统ML和DL(包括重叠),然后我们可以看到 rusty-machine, rustlearnleaf 。他们做了非常有趣和大胆的发展, 特别是当时的leaf 。最终,他们大多放弃了,因为创建一个完整的开源ML/DL框架需要大量的工作:

  • 语言和库的支持 (稍后会介绍)
  • 基本成熟的线性代数和统计学方面的库
  • 一个由ML专家组成的社区,他们碰巧知道Rust并愿意做出贡献

主流的现有ML库(主要使用Python/Cython或c++)都是在这些支持下开发的,Rust也不例外。

继续阅读